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ABSTRACT D
-A class of texture measures is introduced based on first-

order statistics derived from edges in the image. These measures
are related to the generalized cooccurrence features of Davis
et al. They yield good discriminations among textures on per-
ceptually plausible grounds.,
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1. Introduction

A wide variety of measures for discriminating visual tex-

tures have been studied; see [1] for a review. Traditional

approaches involve measures based on the autocorrelation, or

equivalently, on the Fourier power spectrum; measures derived

from second-order gray level probability densities (gray level

cooccurrence matrices); and measures derived from first-order

probability densities of local feature values (e.g., gray level

difference histograms). These measures are computed on a pixel

by pixel basis; they do not take into account the fact that

perceptually, textures often appear to be composed of "primitives"

(i.e., uniform microregions).

Maleson et al. [2) proposed an approach to texture analysis

based on extracting primitives and computing their properties

(e.g., average gray level, area, eccentricity, etc.). He con-

sidered texture measures derived from first- or second-order

probability densities of such properties, where the second-order

densities are defined in terms of neighboring pairs of primitives.

Wang et al. [3] investigated a similar approach in which simple

methods of extracting the primitives were used (e.g., thresholding

at a percentile, or adaptive quantization), and Hong et al. [4]

studied an edge-based method of primitive extraction.

In previous primitive-based approaches, it is assumed that

the primitives are small connected regions, and properties of

these regions are used as a basis for defining texture measures.

In many situations, this assumption is not entirely realistic.



We can perceive primitives in a texture if the texture contains

edges that link into local "clusters," even though these clus-

ters of edges do not surround connected regions. Thus, it would

be better not to use properties of primitives (area, average

gray level, etc.) that depend on the primitives being extracted

as connected regions.

This paper proposes a class of texture measures derived from

properties of edges and pairs of edges detected in the given

texture. The properties include the curvature of an edge, as

well as the average gray level, distance, contrast difference

and slope difference between a pair of facing edges. Texture

measures are derived from the first-order probability densities

of these properties. These measures yield good discrimination

among textures based on perceptually plausible differences among

them.

There is a close relationship between our edge-based texture

measures and the measures based on generalized cooccurrence

matrices (GCMs) introduced by Davis et al. [5-6; see also 7].

The GCM approach is based on cooccurrences of local properties

satisfying given spatial constraint predicates. In particular,

GCMs have usually been defined in terms of pairs of edges having

given orientations and occurring in given relative positions, e.g.,

extending or facing each other. Our measures too are defined

in terms of edges, and make use of their orientation and relative

position; but they also use other properties of the edges, and

involve first-order rather than second-order probability

densities.



Section 2 of this paper defines a set of edge-based tex-

ture measures, and Section 3 illustrates their ability to dis-

crimninate among various types of textures.
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2. Measures

Two types of measures were used in our experiments; one

type was derived from pairs of "facing" edges, and the other

from edge curvature. The computation of these measures is

described in the following paragraphs.

2.1. Edge pairs

To reduce the number of edges from which the edge pair

measures are derived, the image is first smoothed using two

iterations of median filtering over a 3-by-3 neighborhood of

each pixel, and the gray levels are linearly rescaled (if

necessary) to the range 0-31. Edges are then detected by apply-

ing the eight 3-by-3 masks

1 1 1 1 1 0
J 0 0, 1 0 -1,...

-1 -1 -1 0 -1 -1

at every pixel, picking the mask yielding the highest output

value, and thresholding the result at 11 (i.e., discarding

values -_ 10). The same masks (with various thresholds) were

used in the edge-based texture primitive extraction experiments

of [4]. The slope of a detected edge is defined by the mask

that gives the highest output. In addition to the thresholding,

nonmaxima are suppressed in the gradient direction - i.e., an

edge response is discarded if there is a higher response at a

neighboring pixcl in the direction perpendicular to the edge.

Edge pairs are now identified by searching along the gra-

dient direction out to a prespecified distance from each pixel;

in our experiments, the distance was 10. We are interested in

I . ....---- --- - ---.-



pairs of edges that are on opposite sides of a "primitive";

hence we want them to have approximately opposite slopes.

Specifically, when the starting edge pixel has slope 45i ° ,

we consider that an edge pair has been detected if the edge

found by the searcA has slope 45(i+3) °, 45(i+4)*, or 45(i+5)*

modulo 3600. Such edge pairs are sometimes called "anti-

parallel", because their slopes differ by approximately 1800.

The search takes place on both the dark side and the light

side of each edge pixel.

For each edge pair, we compute the following quantities:

1) The distance d(l5dl0) between the edges

2) The average gray level p on the line segment between

the edges

3) The standard deviation G of gray level on that line

segment

4) The absolute difference 6 between the slopes of the

edges (6=00 or 450)

5) The absolute difference A between the contrasts of the

edges

Each of these quantities is computed separately for dge pairs

found by searching on the light side and on the dark side of

each edge pixel. We will denote the light-side quantities by

unprimed symbols and the dark-side quantities by primed symbols

(d',i',',6',A'). Before computation of p and a (or p' and a'),

histogram flattening is applied to the image.



The means of the primed and unprimed quantities just

defined, computed over the given texture sample, will be

used as texture measures. These measures will be denoted by

Md, Mp,M0,M6, and MA (with and without primes). The variances

of the distance measures (d and d') will also be used; these

will be denoted by Vd and Vd'. However, it turns out that they

do not perform as well as the means for most of the textures

used in our experiments.



2.2. Curvature

The curvature-based measures are computed by least-squares

fitting a quadratic surface to the gray levels in a 5-by-5 neigh-

borhood of each pixel, after first median filtering and rescaling

the image as in Section 2.1. This fitted surface defines the

gradient magnitude and direction and the curvature (=rate of

change of gradient direction) at the given pixel. Specifically,

if the x and y partial derivatives of the fitted surface f are

fx and fy, respectively, then the gradient magnitude is V-f2+f2

the gradient direction is tan 1 (f y/fx), and the curvature is

f +f f 2_2f f f
xxy +yy x x yxy

(f2+f2 ) 3/2
x y

(The direction and curvature are in radians; they are converted

to degrees by multiplying them by 180*/.) For further details

on how these results are derived, see [8].

Nonmaximum suppression is then performed on the gradient mag-

nitudes out to distance 2 in the gradient direction - in other

words, a magnitude is ignored if a higher magnitude exists within

distance 2 of it in that direction (on either side). Using

the absolute curvatures at these gradient maxima, we compute two

measures: the mean MC and the variance VC. Two other measures

(denoted by primes) are computed using the curvatures "weighted"

by their corresponding gradient magnitudes. Specifically, we

construct a histogram of the absolute curvatures in which each

pixel contributes a count to the histogram equal to the gradient

magnitude of that pixel, rather than a count of 1. We then

compute tie mean MC' and the variance VC' of the histogram.



3. Experiments

To study the power of these measures to discriminate among

textures, we applied them to samples of three geological

terrain types: Mississippian limestone and shale, lower

Pennsylvanian shale, and Pennsylvanian sandstone and shale, and

two textures (raffia and sand) from Brodatz's album [9]; these

textures have also been used in earlier texture classification

experiments [3,4,7,101. Each sample was 64 by 64 pixels; there

were eight samples each of the terrain textures and four eacn

of the Brodatz textures.

The terrain samples are shown in Figures 1-3, and the

Brodatz samples in Figures 4-5; all samples are shown after

median filtering and gray level rescaling. The corresponding

thresholded, nonmaximum-suppressed edges are shown in Figures

6-10. The effects of the median filtering step are illustrated

in Figure 11, in which tne left column shows one of the terrain

samples (the sixth one in Figure 2) after 0,1, and 2 iterations

of median filtering followed by gray level rescaling. The

center column shows the edge magnitudes after thresholding, and

the right column shows them after nonmaximum suppression. Sig-

nificant "cleaning" is evident on the edges obtained after medi-

an filtering.

Figure 12 shows scatter plots of the values of each of our

measures for the terrain samples. In each plot, the three

terrain types are denoted by M, L, and P, respectively; a "2"

means that two samples yielded the same measured value. For



comparison, scatter plots of the values of two measures based

on second-order gray level probability densities are also given.

(The joint gray level probabilities for a pair of pixels at

relative displacement (1,0) were computed; CONX is the moment

of inertia of the matrix of these probabilities around its

main diagonal. CO4Y is defined analogously using displacement

(0,1). Both CONX and CONY performed very well in earlier

studies [10] using the terrain textures.) Scatter plots are

also given for two of the measures,Mp and Mp', when histogram

flattening was not used in computing them; we see that this

results in much poorer separation of the classes.

Each measure was evaluated for a given pair of textures

by the largest number of samples of the two textures that

could be correctly classified by thresholding the value of

the measure. The results are shown in the first three columns

of Table 1. We see that

a) For each pair of textures, three or more of the measures

yield 14 or 15 out of 16 correct.

b) The variance features do not perform any better than the

mean features.

c) The features M6 and M6', which (like the features used

by Davis et al.) are based on pairs of edge slopes, per-

form relatively poorly.

d) The CONX and CONY features also perform relatively poorly.



Moreover, the values of the measures can often be directly

related to visual properties of the textures, although the

differences for these terrain textures are relatively slight.

Figure 13 shows analogous plots for the Brodatz samples

(R=raffia,S=sand). Here, as summarized in the fourth column

of Table 1, many of the measures yield perfect separation (and

as we see from the scatter plots, often very wide separation)

between raffia and sand; but the M6 and M6', CONX and CONY

measures do not. The perceptual significance of the features

is usually quite obvious in this case. In another experiment,

the Brodatz raffia texture was classified against all three

terrain textures, and many features yielded perfect (28 out

Df 28) classification, including MC, MC', VC', and CONX.
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4. Concluding remarks

The texture measures proposed in this paper are relatively

easy to compute, since they are directly derived from edges and

pairs of edges, and do not require explicit extraction of

"primitives" as connected regions. At the same time, they are

mathematically simple, being based on means of differences

rather than on second-order statistics, and they also have sim-

ple perceptual interpretations. In our experiments, these

measures performed better than various standard measures based

on pairs of gray levels or pairs of edge orientations. For

all these reasons, the proposed measures seem to deserve seri-

ous consideration for texture classification and analysis appli-

cations.



Measure M/L M/P L/P R/S

Md 11 *14 13 5

Md' *15 *14 11 8

MP 12 *14 10 8

M * 14 13 11 8

Ma 12 *14 13 5

Mal *15 *15 11 8

M6 11 11 10 7

M6, 12 12 11 6

MA 12 13 *14 7

MA' 12 11 *14 8

MC 11 13 *14 8

MCI 11 *14 *14 8

Vd 11 11 9 8

Vd' 11 13 11 6

VC 12 12 13 7

VC' 10 12 13 8

CONX 13 13 10 7

CONY 11 13 12 6

Table 1. Number of samples of a given pair of textures that were
correctly classified by each measure using the best
possible threshold.
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Figures 1-3. Terrain
samples.



Figures 4-5. Brodatz
samples: Raffia (top),
sand (bottom).



Figures 6-8. Edges for

Figs. 1-3.



Figures 9-10. Edges for
Figs. 4-5.

Figure 11. Effects of median
1%, Vfiltering.
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